If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+14x=252
We move all terms to the left:
8x^2+14x-(252)=0
a = 8; b = 14; c = -252;
Δ = b2-4ac
Δ = 142-4·8·(-252)
Δ = 8260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8260}=\sqrt{4*2065}=\sqrt{4}*\sqrt{2065}=2\sqrt{2065}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{2065}}{2*8}=\frac{-14-2\sqrt{2065}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{2065}}{2*8}=\frac{-14+2\sqrt{2065}}{16} $
| (2x+10)(2x+7)+4x=342 | | 4(w-2)=2w | | (2x+10)(2x+7)+(2x)(2x)=342 | | 96=7x=22 | | 6y=-3-11 | | 12k+96=4(3k+22) | | 5.2x-4.6-7.1x=2.1-1.9x-2.5 | | -9=-11+b8 | | 4n=4+n | | X^2+(2x)^2=40^2 | | 12÷13t+3÷26=81/78 | | 8x+4=-3x-7 | | 1/9(x+27)-1/3(x-3)=x-17 | | -16n=-32 | | n^2-n+10=0 | | x3-x2-0.25x+0.25=0 | | (2x4)x3=2x4(x)3 | | 12=9-k | | x2-11=0 | | x²-5x-11=0 | | 2x2+14x+9=0 | | 3d+7=10-d | | 7x-2(3x-16)=23 | | 4x+2=5x+29 | | 9x^2-6=2x+9 | | 5,8/x-62=4 | | 1/3(x+6)+1/7(x+7)=x+9 | | 2x+3(2-x)=3x–1 | | -3+9k=15 | | 4x^2-x^2-4x^2+4x=0 | | (2+2y)+2y=6 | | (X+3)(x-2)=5 |